EXPRESSION OF LMO2 IN PROSTATE CARCINOMA AND ADJACENT PROSTATIC PARENCHYMA

Božo Krušlin1,2, Majda Vučić1,3, Silvija Mašić1, Ivan Kruljac4, Cvjetko Lež5,7, Boris Ružić2,6, Borislav Spajić2,6 and Monika Ulamec1,2

1Ljudevit Jurak Department of Pathology and Cytology, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 2Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia; 3Department of Pathology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia; 4Mladen Sekso Department of Endocrinology, Diabetes and Metabolic Diseases, Vinogradska cesta 29, Zagreb, Croatia; 5Department of Pathology and Cytology, Zabok General Hospital, Bračak, Croatia; 6Department of Urology, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 7Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University, Osijek, Croatia

SUMMARY – LMO2 (LIM domain only) is a member of transcription factor family of proteins characterized by their cysteine-rich, zinc-binding LIM domains. Its expression in prostate cancer cells, as well as in adjacent stroma, is described in a study in a cohort of 83 patients treated with radical prostatectomy for clinically localized prostate adenocarcinoma. Authors found that LMO2 overexpression in prostate cancer was strongly associated with features indicative of worse prognosis (higher preoperative PSA, higher Gleason score, positive surgical margins, and extraprostatic extension of disease). Expression of LMO2 was also associated with biochemical disease progression. We analysed immunohistochemical expression of LMO2 in prostate cancer epithelial and stromal cells, as well as in adjacent parenchyma. Significant negative correlation between glandular expression of LMO2 in carcinoma and stromal expression in BPH ($\rho = -0.238, P = 0.033$) was found, but also between stromal expression in carcinomas and glandular expression in BPH ($\rho = -0.255, P = 0.021$). Positive correlation was found between stromal expression in BPH and stromal expression in carcinomas ($\rho = 0.306, P = 0.005$). Study results support the potential role of LMO2 in prostatic carcinogenesis and cancer progression.

Key words: LMO2; Prostate cancer; Stromal reaction

Introduction

Prostate carcinoma (PCa) is the most common cancer worldwide1. It accounts for approximately 18% of all newly diagnosed malignant tumors in males in Croatia. It is responsible for up to 10% of all deaths in males in 20141,2. There are well established features indicative of worse prognosis, but for some groups of PCa we still cannot precisely predict which tumors will behave aggressively. Today, it is well-known that the interaction between stroma and carcinomatous epithelial cells plays an important role in carcinogenesis, cancer progression and metastases3. Prostate cancer stroma is composed of (myo)fibroblasts, endothelial cells and immune cells. Extracellular matrix is also one of the keys for creating a suitable microenvironment for cancer progression3.

LMO2 is a member of transcription factor family of proteins characterized by their cysteine-rich, zinc-binding LIM domains. Its expression is required early in hematopoiesis4 and it was first identified in T-cell acute lymphoblastic leukaemia (T-ALL)4,5. LMO2...
proteins are important regulators in controlling cell
growth and differentiation. Its expression is a strong
predictor of superior outcome in patients with diffuse
large B-cell lymphoma. Recent studies also suggest
that LMO2 over-expression may be associated with
several other malignant tumors, including gastric car-
cinoma, pancreatic carcinoma and glioma.

There are several studies dealing with LMO2 in
prostate cancer, showing the highest expression of
LMO2 in prostate carcinoma epithelial cells and stro-
mal cells of the peripheral zone, using immunohisto-
chemistry and RT-PCR methods.

The aim of this study was to analyse the expression
of LMO2 in prostate cancer epithelial cells, normal
epithelial cells of adjacent prostatic parenchyma, as
well as stromal cells within tumor tissue and surround-
ing non-tumor area.

Patients and methods

The study included 83 patients, median age 66.0
years (range 62-68 years), treated with radical retropu-
bic prostatectomy for clinically localized prostate ade-
nocarcinoma at the Department of Urology in Sestre
milosrdnice University Hospital Centre in Zagreb,
Croatia. All patient identifiers were removed and re-
placed by unique study numbers, linked to the original
identifiers by a single file kept under high security. The
retrieval of archival tissue block was conducted under
institutional review board approval. None of the pa-
tients were treated with hormone or radiation therapy
before or after radical prostatectomy, and none had
secondary cancer.

Specimens were fixed in 10% buffered formalin,
embedded in paraffin, cut at 5-μm thickness, and rou-
tinely stained with haematoxylin and eosin. The diag-
nosis of adenocarcinoma was histologically confirmed
in all cases.

Ninety prostate cancer specimens were used to
construct a tissue microarray by manual tissue arrayer.
Representative areas of each paraffin block were la-
belled by B.K. and M.U. and adequate specimens con-
taining cancer from peripheral zone of the prostate
were sampled. Haematoxylin and eosin stained sec-
tions from each block were analysed to ensure the col-
lection of adequate tissue. Seven specimens were not
included into the study due to lack of tumorous tissue
in the recipient block.

Deparaffinization and immunohistochemical stain-
ing were performed following the Microwave Strepta-
vidin ImmunoPeroxidase (MSIP) protocol on a DAKO
Tech-MateTM Horizon automated immunostainer
(DAKO, Copenhagen, Denmark). We used primary
monoclonal antibodies to LMO2 (1F10/B8): sc-73516,
dilution 1:100, Abcam Cruz Biotechnology, Inc., CA,
USA). Breast cancer tissue served as positive control
and the removal of primary antibody was used as nega-
tive control.

To evaluate the intensity of LMO2 expression in
prostate cancer and adjacent prostatic parenchyma, the
percentage of positively stained carcinoma cells was
examined in the entire slide. We applied a system simi-
lar to that used in a previous study of LMO2 expres-
sion in prostate cancer, where at least moderate stain-
ing intensity was required in more than 25% of tumour
and/or stromal cells to define LMO2 overexpres-
sion. Staining was graded on a 0–3 scale and ex-
pressed as 0, up to 25% of positive carcinoma or stro-
mal cells; low, 25%-50% of positive carcinoma epithel-
ial/stromal cells; moderate, 50%-75% of positive car-
cinoma epithelial/stromal cells; and high, more than
75% of positive carcinoma epithelial/stromal cells. All
samples were examined independently by two observ-
ers (M. U., and B. K.). Any disagreements were re-
solved by a joint review.

Statistical analysis was performed using Mann-
Whitney U test, Kruskal-Wallis test, χ²-test, Kaplan-
Meier test and Cox proportional-hazards regression
test. The levels of statistical significance were set at
least at p<0.05.

Results

Median patient age was 66.0 (62.0 - 68.0) years.
Gleason score was under 7 in 18 (21.7%) patients, and
it was 7 in 50 (60.2%) patients (41 (49.4%) had 3+4
score, while 9 (10.8%) had 4+3 score). Gleason score
>7 was recorded in 15 (18.1%) patients.

LMO2 expression in stromal and glandular tissue of
carcinomas and benign prostate hyperplasia is present-
ed in Table 1 and Figure 1. Overall, patients with BPH
had lower expression of LMO2 in both stromal and
glandular tissue (P<0.001). There was no correlation
between age and Gleason score with LMO2 expression.

LMO2 was expressed in all 83 tissue array speci-
mens of prostate cancer (Table 1 and Fig. 1). Seventy
Table 1. LMO2 expression in stromal and glandular tissue of carcinomas and adjacent uninvolved prostate tissue.

<table>
<thead>
<tr>
<th></th>
<th>BPH</th>
<th>Carcinoma</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n (%))</td>
<td>(n (%))</td>
<td></td>
</tr>
<tr>
<td>Glands</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>LMO2 expression n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 (1.2)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>34 (41.0)</td>
<td>6 (7.2)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>48 (57.8)</td>
<td>77 (92.8)</td>
<td></td>
</tr>
<tr>
<td>Stroma</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>LMO2 expression n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>38 (45.8)</td>
<td>1 (1.2)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>35 (42.2)</td>
<td>36 (43.4)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5 (6.0)</td>
<td>39 (47.0)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5 (6.0)</td>
<td>7 (8.4)</td>
<td></td>
</tr>
</tbody>
</table>

seven cases (92.8%) showed strong and 7 cases (7.8%) showed moderate expression of LMO2 in tumor cells. Expression in the epithelium of benign gland in adjacent parenchyma was strong in 48 cases (57.8%), moderate in 34 (41.0%) and slight in 1 (1.2%) case. On the other hand, strong stromal reaction for LMO2 was found in the stromal component of 7 carcinomas, moderate in 39, slight staining in 36 cases and negative in 1 case only. Negative stromal reaction in adjacent benign prostatic tissue was recorded in 38 cases, slightly positive in 35, moderate in 5, while strong positivity was recorded in 5 cases. Immunohistochemical reaction was membranous and cytoplasmatic (Fig. 1).

We found a significant negative correlation between glandular expression of LMO2 in carcinomas and stromal expression in BPH ($\rho = -0.238, P = 0.033$), but also between stromal expression in carcinomas and

Fig. 1. A) Microscopic appearance of benign prostate hyperplasia (HEx200) and B) strong epithelial positive staining for LMO2 with less positive stromal cells (200x LMO2). C) Microscopic appearance of prostate cancer with D) strong positive cancer epithelial staining and weak stromal staining (200x LMO2)
glandular expression in BPH ($\rho = -0.255$, $P = 0.021$). A positive correlation was found between stromal expression in BPH and stromal expression in carcinomas ($\rho = 0.306$, $P = 0.005$).

Discussion

Prostate is divided into peripheral and transitional zone, central zone and anterior fibromuscular stroma, by McNeal. Histologic differences between these zones are well known, but different molecular features of prostatic zones have also been observed and reported. Alves et al. have recently shown a different proportion of collagen and elastic fibres, muscle and peripheral nerves in the peripheral and transitional zones. Similarly, Tomas et al. described differences in the arrangement of reactive stroma, which occurs in prostatic carcinoma, using histochemical staining by Mallory method and confirmed by immunohistochemistry (desmin and vimentin). Studies on different human cancer specimens demonstrated activated stromal cell phenotypes, modified extracellular matrix (ECM) composition, and increased micro-vessel density similar to stromal changes at the site of wound repair. Numerous molecules and cytokines are involved in cancerous stromal-epithelial interaction and are important in providing a suitable microenvironment for cancer progression. One of these molecules is LMO2.

Overexpression of LMO2 was strongly associated with advanced tumor stage and metastasis of prostate carcinoma. Ma et al. compared the LMO2 expression in human prostatic tissue, prostate cancer cell lines, and xenografts and found that LMO2 may contribute to the development of prostatic adenocarcinoma by suppressing E-cadherin expression, a well-known ECM protein. A recent study has also suggested that LMO2 is overexpressed in stromal cell and cancer-associated fibroblasts of the peripheral zone which may contribute to cancer promotion. It was strongly associated with established features indicative of worse prognosis, such as higher preoperative PSA ($p=0.011$), higher Gleason score ($p<0.001$), positive surgical margins ($p<0.003$), and extraprostatic extension of disease ($p<0.003$). LMO2 expression was also associated with biochemical disease. Authors suggest that this effect may be due to stimulation of secretion of IL-11, which can activate STAT3 signalling downstream via its receptor IL11Ra. This is a pathway for creating the so-called cancer promoting microenvironment.

The aim of our study was to analyse the expression of LMO2 in prostate cancer epithelial and stromal cells, as well as epithelial cells of normal glands and stromal cells of the adjacent prostatic parenchyma. Our results were similar in the sense of higher expression of LMO2 in cancer epithelial cells, as well as stromal cells when compared to BPH. Significant negative correlation between expression of LMO2 in carcinomatous glands and stromal expression in BPH was found ($\rho = -0.238$, $P = 0.033$), but also between stromal expression in carcinomas and glandular expression in BPH ($\rho = -0.255$, $P = 0.021$). Overexpression of LMO2 wasn’t related to higher Gleason grade or PSA and extraprostatic extension.

In conclusion, we believe that LMO2 has a role in PCA progression and creation of cancer promoting microenvironment, but further investigation is needed for novel therapeutic possibilities that could offer a microenvironment-targeted strategy for PCA treatment.

Acknowledgement

This publication was supported by the European Union through the European Regional Development Fund, Operational Programme Competitiveness and Cohesion, under grant agreement No. KK.01.1.01.0008, Regenerative and Reproductive Medicine - Exploring New Platforms and Potentials.

The study was supported by the Medical Faculty University of Zagreb, project number 1101539 (Božo Krušlin)

References

Sažetak

IZRAŽENOST LMO2 U KARCINOMU PROSTATE I PARENHIMU PROSTATE

B. Krušlin, M. Vučić, S. Mašić, I. Kruljac, C. Lež, B. Ružić, B. Spajić i M. Ulamec

LMO2 (LIM domain only) pripada obitelji proteina transkripcijskih faktora, za koje je karakteristična cink vežuća LIM domena bogata cisteinom. Njegova izraženost u karcinomu prostate, kao i u okolnoj stromi određena je u jednoj od studija na kohorti od 83 bolesnika nakon radikalne prostatektomije zbog lokaliziranog karcinoma prostate. Povišena izraženost LMO2 bila je povezana s posebnostima u histochemiji (visokim Gleason zbrojem, pozitivnim kirurškim rubovima i širenjem tumora izvan prostate). Izraženost LMO2 bila je povezana i s biokemijskom progressijom bolesti. U našem istraživanju analizirana je prezentacija LMO2 u karcinomu prostate, u epitelnim i stromalnim stanicama karcinoma, kao i u okolnom, netumorskom parenhimu prostate. Pronađena je značajna negativna korelacija između izraženosti LMO2 u epitelu karcinoma i stromalnom izraženosti u benignoj hiperplaziji (BPH) (p = -0.238, p = 0.033), također i stromalne izraženosti u karcinomu i žlijezdama BPH (p = -0.255, P = 0.021). Pozitivna korelacija pronađena je između izraženosti LMO2 u stromi BPH i stromi karcinoma (p = 0.306, P = 0.005). Rezultati ovog istraživanja podupiru moguću ulogu LMO2 u karcinogenezi prostate i progressiji tumora. Nije dobivena povezanost ekspresije LMO-2 i dobi te Gleason zbroja.

Ključne riječi: LMO2; Karcinom prostate; Reakcija strome